The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Adding and Subtracting Fractions

Stage 1 - Desired Results

Established Goal(s)

Students will understand the basic concepts underlying operations on fractions that will serve as foundation for learning higher mathematics. Students will use their understanding of adding and subtracting fractions in solving real-life problems involving parts of a whole.

Understandings: \quad Essential Questions:

Students will understand that...

- To add or subtract fractions, they must have common denominators.
- Similar fractions are fractions with the same or common denominators.
- Unlike fractions are fractions with different denominators.

Knowledge:

Students will know...

- Add fractions with the same denominators
- Add fractions with different denominators
- Subtract fractions with the same denominators
- Subtract fractions with different denominators
- Commutative, Associative, zero property of fractions

Skills:

Student will be able to:

- Identify common denominator of the given fractions
- Adding fractions with the same denominators
- Adding fractions with different denominators
- Subtracting fractions with the same denominators
- Subtracting fractions with different denominators
- Apply commutative, associative, and zero property in fractions

Stage 2 - Assessment Evidence

Performance tasks:

- Hit the apple
- Demonstrate the learning object to the class and discuss the dynamically linked components.
- One denominator is fixed but the other denominator and both numerators can be adjusted to create the desired fractions.

Other Evidence:

- Group work
- Individual work
- Board work
- Computer presentation
- Worksheets
- Math Links7 Homework activities

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

- As the fractions change, their fraction bars also change, as does their total on the vertical number line.
- Number lines
- This activity uses eighths, but can be adjusted to use other fractions and diagrams. Examples of same denominator problems are available.
- Together the class constructs a number line from 0 to 2 , labelled with eighths. The line should be labelled with both improper fractions and mixed numbers.
- Present a contextual problem.
- The family bought some pizzas. I ate 48 of the pepperoni pizza and 38 of the ham and pineapple pizza. How much pizza did I eat?
- Math Links 7 Workbook

Stage 3 - Learning Plan

Learning Activities

Session 1

- Add and subtract fractions with the same denominator.

Introduce

J"If adding or subtracting is your aim, The bottom numbers must be the same!
J"Changing bottom with multiply or divide, The same to top must be applied,
J"And don't forget to simplify, Before its time to say good bye"

- https://www.skillsyouneed.com/num/fractions.html
- Math Links 7C Textbook

Session 2

- Add and subtract fractions with the same denominator.
- Identify common denominator of the given fractions
- https://www.skillsyouneed.com/num/fractions.html
- Math Links 7C Textbook

Session 3

- Properties of fraction
- Commutative
- Associative
- zero
http://web.mnstate.edu/peil/MDEV102/U3/S22/S226.html

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Angle Pair

Stage 1 - Desired Results

Established Goal(s)

Identify and describe geometric relationships between angles formed when parallel lines are cut by a transversal: Use alternate interior, alternate exterior or corresponding angles 8.2.A.2.a. Determine the measurements of angles formed by parallel lines cut by a transversal line.

Understandings:

Students will understand that...

- Adjacent angles have a common side and a common vertex (corner point) and don't overlap.
- Two angles are Complementary when they
add up to 90 degrees (a Right Angle \llcorner).
- Two Angles are Supplementary when they add up to 180 degrees.

Knowledge:

Students will know...

- Adjacent angles
- Complementary angles
- Supplementary angles
- Linear pair (both adjacent and supplementary angles).

Essential Questions:

- How can I compare properties of basic figures?

Skills

Student will be able to:

- Identify adjacent, complementary and supplementary angles
- Name adjacent, complementary and supplementary angles

Stage 2 - Assessment Evidence

Performance tasks:

- Tour anywhere.

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Math Links7 Homework activities
- Math Links 7 Workbook

The Asian International School
Unit Backward Design
Mathematics, Starter, 2018-2019

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Angles and Angle Notation

Stage 1 - Desired Results

Established Goal(s)

Geometric figures can be analyzed based on their properties. Geometric figures can be classified based on their properties. Parallel sides, particular angle measures, and symmetry can be used to classify geometric figures. Two lines are parallel if they never intersect and are always equidistant.

Understandings:

Students will understand that...

Acute Angle	an angle that is less than 90°
$\underline{\text { Right Angle }}$	an angle that is 90° exactly
$\underline{\text { Obtuse Angle }}$	an angle that is greater than 90° but less than 180°
Straight	an angle that is 180° exactly
$\underline{\text { Reflex Angle }}$	an angle that is greater than 180°

-

Knowledge:

Students will know...

- Half-plane
- Ray lies between two rays
- Angles
- Naming angles
- Acute, right, obtuse, straight and reflex angle

Essential Questions:

- How can you describe the relationships among the angles of a triangle?
- How are geometric objects different from one another?
- What makes an angle a right angle?
- How can you use only a right angle to classify all angles?

Skills:

Student will be able to:

- Name a half-plane
- Give examples of half-planes
- Construct a ray between two other rays
- Name angles ${ }^{\theta}$)
- Identify acute, right, obtuse straight and reflex angles
- Measure angles with a protractor

Stage 2 - Assessment Evidence

Performance tasks:

- Is This the Right Angle?
- My Many Triangles. https://www.georgiastandards.org/Georgia-

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities

Standards/Frameworks/4th-Math-Unit-6.pdf	- Math Links7 Homework activities - Math Links 7 Workbook
Stage 3 - Learning Plan	
Learning Activities Session 1 - Half-plane - Ray lies between two rays http://www.mathsisfun.com/angles.html	
Session 2 - Angles Naming angles - Acute - Right - Obtuse - straight an - reflex angle http://www.mathsisfun.com/angles.html	
Session 3 - Measure angles with a protractor. http://www.mathsisfun.com/angles.html	

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019

Topic: Circles

Stage 1 - Desired Results

Established Goal(s)

At the end of this unit, students will learn to...

- Measure angles inside the circle
- Construct a circle with a given radius or diameter

Understandings:

Students will understand that...

- A circle is the set of all points equidistant from a given point.
- The point from which all the points on a circle are equidistant is called the center of the circle, and the distance from that point to the circle is called the radius of the circle.
-

Knowledge:

Students will know...

- Terminologies
- Center
- Radius
- Diameter
- Points (Interior, exterior, on the circle)
- Arcs
- Chords
- Degree measure of an angle inside the circle

Stage 2 - Assessment Evidence

Performance tasks:

- Create a crop circle. https://daniellagher.wordpress.com/2013/10/2 3/performance-tasks-the-geometry-of-a-cropcircle/

Essential Questions:

- How do you determine the measure of angles formed by chords?
- How can you use circles to solve real world problems?

Skills:

Student will be able to:

- Define center, radius, diameter, points (Interior, exterior, on the circle), arcs and chords
- Measuring angles inside the circle
- Construct a circle with a given radius or diameter

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

Stage 3 - Learning Plan

Learning Activities

Session 1

- Definition of Terms
- Center
- Radius
- Diameter
- Points (Interior, exterior, on the circle)
- Arcs
- Chords

Session 2

- Measuring angles inside the circle

Session 3

- Construct a circle with a given radius or diameter

Session 4
-

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Constructing Angles

Stage 1 - Desired Results

Established Goal(s)

In this unit, students will be able to construct an angle given a degree measure and construct a bisector of a given angle measure using a protractor and compass.

Understandings:

Students will understand that...

- Constructing angles is an important part of geometry as this knowledge is extended for construction of other geometric figures as well, primarily the triangles.

Knowledge:

Students will know...

- Draw angle with a given measure
- Bisect an angle
- protractor
- Compass

Stage 2 - Assessment Evidence

Performance tasks:

- Constructing angles.
- http://www.math-aids.com/Geometry/

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Math Links7 Homework activities
- Math Links 7 Workbook

Stage 3 - Learning Plan

Learning Activities

Session 1

- Draw angle with a given measure

Session 2

- Bisect an angle

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

```
- protractor
- compass
```

-

Session 3

- Construct the bisector of a given angle using a protractor and compass
https://www.khanacademy.org/math/basic-geo/basic-geo-angle/measure-angles/v/constructing-angles

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Divisibility

Stage 1 - Desired Results

Established Goal(s)

Students apply divisibility rules, to understand factors and multiples
Understandings:
Students will understand that...

- Factors and divisibility are related because
multiplication and division are inverse operations;
because of this patterns exist between the two.

Knowledge:

Students will know...

- a is divisible by b if $\frac{a}{b}$ gives a remainder of zero
- Evenly divisible properties
- Divisibility rules for 2,5 and 10
- divisibility rule for 3 and 9
- divisibility rule for 7
- divisibility rule for 6

Essential Questions:

- How are numbers related to one another?
- How can we determine if a number is divisible by 2,5 and 10 ?
- How can we determine if a number is divisible by 3 and 9?
- How can we determine if a number is divisible by 7 ?
- How can we determine if a number is divisible by 6 ?

Skills:

Student will be able to:

- Use English notations
- Identify when a sum is divisible by a given number
- Identify when a number is divisible by 2,5 and 10
- Identify when a number is divisible by 3 and 9
- Identify when a number is divisible by 7
- Identify when a number is divisible by 6

Stage 2 - Assessment Evidence

Performance tasks:

- Given what you've learned about divisibility, find digits A and B in the number below so that the following conditions are true. Show all of your work.
- The 5 -digit number must be divisible by 4 .
- The 5 -digit number must be divisible by 9 .
- Digit A cannot be the same as digit B.
- 12,A3B
- Explain the steps you followed to solve the problem.

Other Evidence:

- Group work
- Individual work
- Board work
- Computer presentation
- Worksheets

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

Learning Activities

Session 1

- Using proper English notations in writing division.
- Identify when a sum is divisible by a given number.

Session 2

- Identify when a number is divisible by 2,5 and 10
- Identify when a number is divisible by 3 and 9

Session 3

- Identify when a number is divisible by 7
- Identify when a number is divisible by 6
https://www.education.com/lesson-plan/divisibility-rules/
anmoe buere.

Divisible by 3 and 9

Divisible by 4 and 6

Divisible by 2 and 5

Divisible by 4 and 9

Divisible by 3 and 5

Divisible by 2 and 9

Divisible by 6 and 5

0

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Fractions

Stage 1 - Desired Results

Established Goal(s)

- At the end of the unit, the students will define fraction, numerator, denominator, fraction bar, unit fraction, and multiple.
- Identify the number of shaded parts and the number of equal parts in a shape (circle, rectangle).
- Identify a fraction by comparing the number of shaded parts to the number of equal parts

Understandings: Students will understand that... - A fraction is a part of a whole. - A fraction has two parts: the numerator the denominator	Essential Questions: - When can you say that a number is a fraction? - What is numerator? - What is denominator?
Knowledge: Students will know... - Mathematical terminologies - Numerator(number of parts considered) - Denominator (total number of parts that make up the whole). - $\frac{a}{b}$ where a and b are integers, $\quad b \neq 0$	Skills: Student will be able to: - Define numerator and denominator of a fraction. - Represent fraction algebraically and geometrically. - Identify the number of shaded parts and the number of equal parts in a shape. - Identify a fraction by comparing the number of shaded parts to the number of equal parts.

Stage 2 - Assessment Evidence

Performance tasks:

- Gardening Fractions

Other Evidence:

- Group work
- Individual work
- Board work
- Computer presentation
- Worksheets
- Math Links7 Homework activities
- Math Links 7 Workbook

The Asian International School
Unit Backward Design
Mathematics, Starter, 2018-2019

- Explain your work for each problem using pictures, words, and symbols.
- 1) What fraction of the garden is planted with each type of vegetable?
- 2) How much more of the garden is planted with tomatoes than with cucumbers?
- 3) Farmer Brown wants to fertilize exactly of the garden today. What combination of vegetables covers exactly one-half of Farmer Brown's garden?

Stage 3 - Learning Plan

Learning Activities

Session 1

Definition of Terms

- Fraction
- Numerator
- Denominator
https://www.skillsyouneed.com/num/fractions.html
Math Links 7C textbook

Session 2

- Teacher will review lessons from previous session.
- Students will work by pair or group and answer some exercises given.
- Student identifies Fraction for Shaded Area.
https://www.mathworksheets4kids.com/fractions/identify/shade-1.pdf
https://www.mathworksheets4kids.com/fractions/identify/quarter-half.pdf
- Student will construct and shades figure for a given fraction.
- Students will answer exercises on the board and discuss their answers.

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Fundamental operations on natural Numbers

Stage 1 - Desired Results

Established Goal(s)

Evaluate the fundamental operations on Natural numbers; e.g., Addition and Multiplication,
Subtraction and division.

Understandings:

Students will understand that...

- Any integer that can be divided exactly by 2 is an even number.
- Any integer that cannot be divided exactly by 2 is an odd number.

Knowledge:

Students will know...

- The correct proper notations for division and multiplication.
- $\quad a \cdot b$ or ab for multiplication
- $\frac{a}{b}$ for division
- The basic properties of even and odd numbers
- odd + odd
- odd•odd
- even + even
- even • even
- odd + even
- odd • even

Essential Questions:

- What is an odd number?
- What is and even number?
- How can we predict the result whether it is even or odd number before adding or multiplying a number.

Skills:

Student will be able to:

- Perform operations without calculator.
- Understand and perform long division.
- Understand and use correct proper notations for division and multiplication.
- Understand the concept and basic properties of even and odd numbers.
- Performing basic operations on consecutive numbers.
- Sum and product of two consecutive numbers.
- Sum and product of two even consecutive numbers.

Stage 2 - Assessment Evidence

Performance tasks:

- Find four pairs of integers with a sum of 5.
- Find four pairs of integers with a sum of 10
- Operations with Even and Odd Numbers Add two even numbers and the result is even. Add two odd numbers and the result is even. Add one even and one odd and the result is odd.

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Group work
- Individual work
- Board work

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019

http://www.mathsisfun.com/numbers/even-odd.html

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

- Performing basic operations on consecutive numbers
- sum and product of two consecutive numbers
- sum and product of two even consecutive numbers

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Introduction to Integers

Stage 1 - Desired Results

Established Goal(s)

To allow students to discover the mathematical rules for adding integers with the same signs and adding integers with different signs.

Understandings:	Essential Questions:

Students will understand that....

- The sum of two negative integers is a negative integer.
- The sum of two positive integers is a positive integer.

Knowledge:

Students will know...

- Addition of integers of the same sign
- Addition of integers of the different sign
- Subtraction of integers
- How do addition and subtraction of integers compare?
- When will the sum of two integers be positive?

Negative? Or zero?

Skills:

Student will be able to:

- Identify the rules in adding integers
- Perform addition of integers without calculator
- Perform subtraction of integers without calculator
- Define the set of integers, positive numbers, negative numbers, opposites and signs.
- Identify the opposite of an integer.
- Indicate an integer from a number line.
- Differentiate between a positive integer and a negative integer.
- Recognize that a positive integer can be written with or without a sign.

Stage 2 - Assessment Evidence

Performance tasks:
• Show me a sign.
• Manage your family's checkbook for one
month.
$\frac{\text { http://tleportfolio.weebly.com/uploads/6/9/7/5/6 }}{}$975460/7 thmathubdintegers.pdf

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Math Links7 Homework activities
- Math Links 7 Workbook

Stage 3 - Learning Plan

Learning Activities

Session 1

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

- Addition of integers of the same sign
http://www.mathsisfun.com/positive-negative-integers.html

Session 2

- Addition of integers of the different sign
- Subtraction of integers
http://www.mathsisfun.com/positive-negative-integers.html

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Integers_Multiplication and division of integers

Stage 1 - Desired Results

Established Goal(s)

To allow students to discover the mathematical rules for multiplying and dividing integers with the same signs and multiplying and dividing integers with different signs.

Understandings:

Students will understand that...

- The procedure for multiplying and dividing integers with like signs.
- The procedure for multiplying and dividing integers with unlike signs.

Essential Questions:

- What will be the sign result if we multiply or divide integers with the same sign?
- What will be the sign result if we multiply or divide integers with different signs?
- When multiplying and dividing integers, how do you determine the sign?

Skills:

Student will be able to:

- Identify the rules in multiplying integers
- Perform multiplication of integers without calculator
- Restate that the product of two integers with unlike signs is a negative integer.
- Restate that the product of two integers with like signs is a positive integer.
- Define the Associative Law of Multiplication.
- Perform multiplication of two integers with like signs.
- Perform multiplication of two integers with unlike signs.
- Recognize that the Associative Law of Multiplication applies to integer multiplication.
- Perform multiplication of three integers, two at a time, applying the rules for multiplying integers.
- Recognize that when multiplying three integers, one can multiply the product of any two by the third.
- Apply the procedures for integer multiplication to complete five interactive exercises.
- Perform division of integers without calculator

Performance tasks:

- Multiplying and dividing integers group games. https://jeopardylabs.com/play/multiplying-dividing-integers, hundreds, thousand, etc.

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Math Links7 Homework activities
- Math Links 7 Workbook

Stage 3 - Learning Plan
Learning Activities
Session 1

- Multiply integers of the same sign
- Divide integers of the same sign

Session 2

- Multiply integers of different signs
- Divide integers of different signs

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Multiplying and Diving Fractions

Stage 1 - Desired Results

Established Goal(s)

- Understanding properties (Commutative, Associative, distributive and identity property of fractions) of fractions and apply it in multiplication and division of fractions.

Understandings:

Students will understand that...

- To multiply fractions, multiply the numerator with numerator and multiply the denominator with denominator.
- To divide fractions, turn the second fraction (the one you want to divide by) upside down
(this is now a reciprocal).Multiply the first fraction by that reciprocal.

Knowledge:

Students will know...

- Multiply fractions
- Commutative, Associative, distributive and identity property of fractions
- Divide fractions

$$
\begin{array}{ll}
0 & \frac{\frac{a}{b}}{c}=\frac{a}{b}\left(\frac{d}{c}\right) \\
0 & \frac{a}{\frac{c}{c}}=\frac{a c}{b} \\
0 & \frac{a}{c}=\frac{a}{b c}
\end{array}
$$

Essential Questions:

- How to multiply and divide fractions?

Skills:

Student will be able to:

- Multiply fractions without using calculator
- Apply commutative, associative, and zero property of multiplication in fractions.
- Divide fractions using basic rules.

Stage 2 - Assessment Evidence

Performance tasks:

- Fractions of collections
- Finding one-third of a number is the same as dividing by three, and can be represented with materials in a similar way.
- For example, 13 of 12 and $12 \div 3$ could both be modelled using 12 counters partitioned into three equal groups of four.

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Math Links7 Homework activities

The Asian International School
Unit Backward Design
Mathematics, Starter, 2018-2019

- Math Links 7 Workbook
- Using 12 counters to model division.
- The mathematical relations suggested by the three equal groups of four counters are:
- 3×4
- $=12$
- $12 \div 3$
- $=4$
- 13 of 12
- $=4$
- Working with fractions of collections is helped by a sound knowledge of factors and multiples.
- Using arrays and area grids strengthens the relationships between multiplication, division and fractions, by making the inverse relations more apparent.

-
- An array of 12 and a grid of 12 .
- 3×4
- = 12
- 4×3
- $=12$
- $12 \div 3$
- $=4$
- $12 \div 4$
- $=3$
- 13 of 12
- $=4$
- 14 of 12
- $=3$

Stage 3 - Learning Plan

Learning Activities

Session 1

- Multiply fractions

Introduce

- J"Multiplying fractions: no big problem, Top times top over bottom times bottom.
"And don't forget to simplify, Before it's time to say goodbye" J
https://www.mathsisfun.com/fractions multiplication.html
http://web.mnstate.edu/peil/MDEV102/U3/S22/S222.html\#MultiplyRule

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

- Properties of Fractions
- Commutative
- Associative
- Distributive
- Identity
http://web.mnstate.edu/peil/MDEV102/U3/S22/S226.html

Session 3

- Divide Fractions

Introduce

- J"Dividing fractions, as easy as pie, Flip the second fraction, then multiply. And don't forget to simplify, Before it's time to say goodbye" J
- "leave me, change me, turn me over"
https://www.mathsisfun.com/fractions division.html
http://onlinemschool.com/math/library/fraction/division/

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Order of Operation

Stage 1 - Desired Results

Established Goal(s)

Understanding order of operations; e.g. The order of operations rule and practice how to use it.

Understandings:
 Students will understand that...
 - There are certain rules following order of operations when simplifying: Parentheses, Exponents, Multiplication/Division, and Addition/Subtraction.
 - Multiplication and division are done based on order of appearance from left to right in the problem, and addition and subtraction are done based on order of appearance from left to right in the problem.

Knowledge:

Students will know...

- The exact order of doing operations.

Essential Questions:

- What is the purpose of mathematical rules to solve equations?
- What is the Order of Operations rule and how is it used?
- How greatly do outcomes differ when solved incorrectly?

Stage 2 - Assessment Evidence

Performance tasks:

- Treasure Hunt
- https://ccgps-task-submissionguidelines.wikispaces.com/file/view/Performar ce+Task+Order+of+Operations+Treasure+Hunt pdf

Other Evidence:
-Group work

- Individual work
-Board work
-Computer presentation
-Worksheets

Stage 3 - Learning Plan

Learning Activities

Session 1

- Exact order of doing operations
- "Operations" means things like add, subtract, multiply, divide, squaring, etc. If it isn't a number it is probably an operation.

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

\circ	PEMDAS
\circ	BODMAS
\circ	BEDMAS
http://www.mathsisfun.com/operation-order-pemdas.html	

Session 2

- Perform the operation
- Identify operations at each step

Example:

$7+\left(6 \times 5^{2}+3\right)$	
$7+(6 \times 25+3)$	Exponent first
$7+(150+3)$	Start inside Parentheses, multiply
$7+(153)$	inside Parentheses, Then Add
$7+153$	Parentheses completed, last operation is an Add
160	DONE!

http://www.mathsisfun.com/operation-order-pemdas.html

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Powers of natural number

Stage 1 - Desired Results

Established Goal(s)

Understanding powers (exponents) of natural numbers; e.g., Basic operations, Exponential growth problems.

Understandings:	Essential Questions:

Students will understand that...

- The power of a number says how many times to use the number in a multiplication.

Knowledge:

Students will know...

- Definition of powers(exponents) of natural numbers
- Basic operations $\quad a^{m} \cdot a^{n}=a^{m+n}$
- $\quad \frac{a^{m}}{a^{n}}=a^{m-n}$
- $\quad\left(a^{m}\right)^{n}=a^{m n}$
- Exponential growth problems

Essential Questions:

- Can I simplify expressions containing natural number exponents by applying the addition rule for laws of exponents?

Skills:

Student will be able to:

- Simplify a^{n} to a natural number
- Will be able to define base and exponent (powers).
- Perform basic operations
- Understand the concept of exponential growth

Stage 2 - Assessment Evidence

Performance tasks:

- Change is fundamental to understanding functions.
- Numbers or objects that repeat in predictable ways can be described or generalized.
- An operation can be "undone" by its inverse.
- Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations and inequalities so solutions can be found.

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Group work
- Individual work
- Board work
- Computer presentation
- Worksheets

Stage 3 - Learning Plan

Learning Activities

Session 1

- Definition of powers(exponents) of natural numbers

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019

- The power of a number says how many times to use the number in a multiplication.
- 8^{2} could be called " 8 to the second power", " 8 to the power of 2 ".
http://www.mathsisfun.com/algebra/exponent-laws.html

Session 2

- Basic operations
- $x^{2} x^{3}=(x x)(x x x)=x x x x x=x^{5}$

So, $x^{2} x^{3}=x^{(2+3)}=x^{5}$

- $x^{4} / x^{2}=(x x x x) /(x x)=x x=x^{2}$

So, $x^{4} / x^{2}=x^{(4-2)}=x^{2}$

- $\left(x^{3}\right)^{4}=(x x x)^{4}=(x x x)(x x x)(x x x)(x x x)=x x x x x x x x y x x x=x^{12}$

So $\left(x^{3}\right)^{4}=x^{3 \times 4}=x^{12}$
http://www.mathsisfun.com/algebra/exponent-laws.html

- Exponential growth and decay
http://www.mathsisfun.com/algebra/exponential-growth.html

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Prime and Composite

Stage 1 - Desired Results

Established Goal(s)

Understanding primes and composites; e.g., Factorization, prime Numbers, composite numbers and prime decomposition.

Understandings:
 Essential Questions:

Students will understand that...

- A prime number is a number which has only two factors, one and itself.
- A composite number is a number which has more than 2 factors.
- Applying the rules of divisibility help differentiate between a prime and composite number.

Knowledge:

Students will know...

- Factorization
- Definition of Prime Numbers (1 is not prime)
- Definition of Composite numbers
- Prime decomposition
- What is the difference between prime and composite numbers?
- What is prime factorization?
- How to find prime factorization of a number?

Stage 2 - Assessment Evidence

Performance tasks:

- Divisibility rules can help determine whether a number has particular factors.
- Examples:
- Factors of 12 are $1,2,3,4,6,12$
- The multiples of 12 are $12,24,36,48$...
- Students will apply the divisibility rules to determine to whether a number is prime or composite.
- \quad Students will determine if a given number is prime or composite, and write a brief summary explaining how they differentiated between the two using the divisibility rules.

Other Evidence:

- Group work
- Individual work
- Board work
- Computer presentation
- Worksheets

The Asian International School
 Unit Backward Design

Mathematics, Starter, 2018-2019

Learning Activities

Session 1

- Factors and multiples
- Tables of factors and multiples
http://www.mathsisfun.com/numbers/factors-multiples-table.html
http://www.mathsisfun.com/numbers/factors-multiples.htm|

Session 2

- Prime and composite
- A Prime Number can be divided evenly only by 1 or itself.
- And it must be a whole number greater than 1.
- 1 is not prime
- It is a Composite Number when it can be divided evenly by numbers other than 1 or itself.
https://www.mathsisfun.com/prime-factorization.html
http://www.mathsisfun.com/prime-composite-number.html

Session 3

- Prime decomposition
https://www.mathsisfun.com/prime-factorization.html
http://www.mathsisfun.com/prime-composite-number.html

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Properties of Fractions

Stage 1 - Desired Results

Established Goal(s)

Demonstrate and apply a knowledge and sense of numbers, including numeration and operations (addition, subtraction, multiplication, division) patterns, ratios, and proportions

Understandings:

Students will understand that...

- Equivalent fractions have the same value, even though they may look different.
- Multiplying both numerator and denominator by the same amount, yield an equivalent fraction.
- Simplifying (or reducing) fractions means to make the fraction as simple as possible.
- To simplify a fraction, divide the top and bottom by the highest number that can divide into both numbers exactly.

Knowledge:

Students will know...

- Equivalent fractions
- Basic properties of a fractions
$\frac{-1}{2}=\frac{2}{-4}$ (- can be in numerator or
denominator)

$$
\begin{array}{ll}
\frac{1}{2}\left(\frac{3}{3}\right)=\frac{3}{6} \\
0 & \frac{a}{b}=\frac{\frac{a}{n}}{\frac{b}{n}} \text { or } \quad \frac{a}{b}=\frac{a / n}{b / n}
\end{array}
$$

- Simplify fractions
- Compare fractions

Essential Questions:

- Write each of these numbers in words.
- Calculate the following numbers like 23×10.
- Put each of these sets of numbers in order, starting with the smallest.
- Calculate the following number using a mental method.
- Calculate these numbers using written methods.
- How to use of calculator in solving number problems.

Skills:

Student will be able to:

- Determine when two fractions are equivalent.
- Given a fraction, find other equivalent fractions.
- Convert fractions to common denominator.
- Explain why two given fractions are or are not equivalent.
- Recognize that equivalent fractions are equal in value.
- Simplify a fraction by dividing its numerator and its denominator by a common factor.
- Reduce fractions to their simplest form.
- Compare fractions using $>,<,=$
- Arrange fractions in ascending or descending order.

Stage 2 - Assessment Evidence

Performance tasks:	Other Evidence:
• Grids and arrays	• Group work
- The most valuable aspect of using grids and arrays is that	- Individual work

they focus thinking on factors and multiples, which is the essential foundation for developing general strategies for creating equivalent fractions.

- Representations such as circles and fraction walls are more likely to promote additive thinking.
- For example, this fraction wall clearly shows that 36 is equivalent to 12 but tends to suggest the additive relationship of $16+16+16=12$.

- A fraction wall.
- On the other hand, having to create the one grid that will show both halves and sixths demands thinking about the multiplicative relationship between the denominators 2 and 6 (i.e. $2 \times 3=6$).
-
- Combining grids.

Stage 3 - Learning Plan

Learning Activities

Session 1

- Equivalent fractions
- Basic properties of fraction
- Multiplying the numerator and denominator of a fraction by a non-zero number, the results of the new fraction is said to be equivalent to the original fraction. Dividing the numerator and denominator of a fraction by the same non-zero number will also yield an equivalent fraction.
http://onlinemschool.com/math/library/fraction/fraction property/

Session 2

- Simplifying fractions
- Any fraction can be fully reduced to its lowest terms by dividing both the numerator and denominator by their greatest common divisor. This is called reducing or simplifying fraction. http://onlinemschool.com/math/library/fraction/simplify/

Session 3

- Comparing fractions
- To compare fraction with the common numerators (top number of a fraction) you need to compare denominators and to see which fraction is greater.
- The fraction with the smallest denominator is the larger fraction if the numerators are the

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019
same.

- To compare fraction with the common denominators (bottom number of a fraction) you need to compare numerators and to see which fraction is greater.
- The fraction with the biggest numerator is the larger fraction if the denominators are the same.
- To compare fractions with different denominators you need to make the denominator the same finding the least common multiple (LCM) of the denominators (which is called the Least Common Denominator). Then to compare numerators and to see which fraction is greater.
http://onlinemschool.com/math/library/fraction/comparison/

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Properties of Integers

Stage 1 - Desired Results

Established Goal(s)

In these lessons and examples, we will learn the following properties of Integers: Commutative Property for Addition, Associative Property for Addition, Distributive Property, and Identity Property for Addition, Identity Property for Multiplication, Inverse Property for Addition and Zero Property for Multiplication.

Understandings:
 Essential Questions:

Students will understand that...

- Understand additive inverse and that opposite quantities combine to make zero.
- Understand subtraction of integers as adding the additive inverse and apply this to real world situations.
- Write each of these numbers in words.
- Calculate the following numbers like 23×10.
- Put each of these sets of numbers in order, starting with the smallest.
- Calculate the following number using a mental method.
- Calculate these numbers using written methods.
- How to use of calculator in solving number problems.

Skills:

Student will be able to:

- Identify the property used in a given equation.
- Calculate an equation using the properties.
- Apply the properties of integers to some expressions.
- Associative
- $a+(b+c)=(a+b)+c$

○ a (b \quad "c) $=\left(\mathrm{a} \quad{ }^{\circ} \mathrm{b}\right) \mathrm{c}$

- Distributive
- $a(b+c)=a b+a c$
- Additive Inverse
- $a+(-a)=0$
- Identity
- $a+0=0+a=a$
- \quad - $1=1 \cdot a=a$

Stage 2 - Assessment Evidence

Performance tasks:

- Measurements and monetary conversion.
- Properties of Integers worksheets. https://www.mathworksheets4kids.com/propertie s.php

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Math Links7 Homework activities
- Math Links 7 Workbook

Stage 3 - Learning Plan

Learning Activities

Session 1

- Commutative

$$
o \quad a+b=b+a
$$

○ a "b=b "a

- Associative
- $a+(b+c)=(a+b)+c$
- a (b
" c) $=(\mathrm{a}$
"b) c
- Distributive

$$
0 \quad a(b+c)=a b+a c
$$

http://www.math.com/school/subject1/lessons/S1U1L13GL.html\#sm1

Session 2
Additive Inverse
$a+(-a)=0$
Identity
$a+0=0+a=a$
$\mathrm{a}^{-1}=1^{\cdot} \cdot a=\mathrm{a}$
http://www.math.com/school/subject1/lessons/S1U1L13GL.html\#sm1

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Set and Set Notations

Stage 1 - Desired Results

Established Goal(s)

In this unit we will explore a branch of mathematics known as Set Theory. We will focus on basic symbols, set notations, terminologies, and operations.
Understandings:
Students will understand that...

- A set is a collection of well defined, unordered,
distinct objects or elements, with something in
common.
- The elements of a set are the things within it. They
are also called the member of a set.
- The symbol \in means 'is an element of a set and \notin
which means 'is not an element of a set.
- The empty set has no elements at all. It is
written $\}$ or \emptyset.

Knowledge:

Students will know...

- Mathematical terms;
- Unit set,
- Finite and infinite sets,
- Order of sets,
- Union
- Intersection of sets,
- Complement of a set,
- Empty set,
- Subset,
- Power of a set.
- Natural number
- Even
- Odd

Essential Questions:

- How do you create order out of chaos?
- What is a set?
- What is a natural number?

Stage 2 - Assessment Evidence

Performance tasks:

- Pre-Assessment on Real Numbers,
- Placement on Number Line Quiz/Ticket
- Rational vs. Irrational
- Numbers Set Notations Venn Diagrams Set

Other Evidence:

- Board work Activities
- Group work
- Individual work
- Computer presentation

The Asian International School

Unit Backward Design
Mathematics, Starter, 2018-2019

- Relationships (Union, Intersection,
- Worksheets Complement) Properties of Real Numbers

Stage 3 - Learning Plan

Learning Activities

Session 1

Definition of terms

- Definition of terms:
- Unit set,
- Finite and infinite sets,
- order of sets,
- Union and Intersection of sets,
- Complement of a set,
- Empty set, Subset,
- Power of a set.
http://www.mathscoop.com/pre-calculus/set-theory/what-is-a-set.php
Mathematics Matters 2 Textbook

Session 2
Perform basic set operation (Union, Intersection, and complement)
https://www.skillsyouneed.com/num/set-theory.html
Mathematics Matters 2 Textbook

Session 3

- Identify subsets
- Calculate the number of subsets of a finite set
https://www.mathsisfun.com/sets/sets-introduction.html
Mathematics Matters 2 Textbook

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019
 Topic: Triangles

Stage 1 - Desired Results

Established Goal(s)

Students will be able to classify triangles by their sides and angles and use appropriate tools in constructing a triangle.

Understandings: Students will understand that... - The triangles have different types based upon the length of the sides and the measurement of their angles.	Essential Questions: - How do you identify and name a triangle? - How do you use a tool to construct a triangle?
Knowledge: Students will know... - Define triangles - Naming triangles - Interior, exterior, boundary	Skills: Student will be able to: - Name triangles - Identify interior, exterior and boundary points - Constructing triangles given lengths or angle measures

Stage 2 - Assessment Evidence

Performance tasks:

- What am i?
- Classifying/naming triangles.
- Construct me.

Other Evidence:

- Summative Assessments / Short Quiz
- Board work Activities
- Math Links7 Homework activities
- Math Links 7 Workbook

Stage 3 - Learning Plan

Learning Activities

Session 1

- Definition of Terms:
- Naming triangles
- by capital letter at the vertex
- by lower-case letter or number inside the angle

The Asian International School
 Unit Backward Design
 Mathematics, Starter, 2018-2019

- by three capital letter with the vertex letter placed in the middle.

Session 2

- Identify interior
- exterior and
- boundary points

Session 3

- Constructing triangles given lengths or angle measures.

